

Effectiveness of monovalent rotavirus vaccine against hospitalization with acute rotavirus gastroenteritis in Kenyan children

Khagayi S¹,Omore R¹, Audi A¹, Ogwel B¹, Ochieng B¹, Juma J¹, Apondi E¹, Bigogo G¹, Onyango C³, Ngama M²,Otieno G², Njeru R², Owor BE², Mwanga MJ², Tuck B³, Addo Y³, Breiman RF³, Tabu C⁴, Amwayi A⁴, Mwenda JM⁶, Tate JE⁷, Parashar UD⁷, Nokes DJ², Verani JR⁸

Affiliations

¹Kenya Medical Research Institute (KEMRI)-Centre for Global Health Research (CGHR), Kisumu, Kenya;

²Centres for Disease Control and Prevention, Kisumu, Kenya

³KEMRI-Centre for Geographic Medicine Research-Coast (CGMRC)/KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya;

⁴Emory Global Health Institute (EGHI), Emory University, Atlanta, GA, USA;

⁵Ministry of Health, Nairobi, Kenya;

⁶WHO Regional Office for Africa (WHO/AFRO), Brazzaville, Republic of Congo;

⁷Viral Gastroenteritis Branch, Division of Viral Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA;

⁸School of Life Sciences and Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, UK ⁹Centers for Disease Control and Prevention, Nairobi, Kenya

12th African Rotavirus Symposium

Johannesburg, South Africa July 30- August 10, 2019

- In Kenya, before rotavirus vaccine introduction, among <5 yr olds, rotavirus responsible;
 - 19% (~9,000) of all hospitalizations with diarrhea
 - 16% (~1.5 million) of all clinic visits
 - > 4,000 deaths a leading cause of severe diarrhea
- Kenya introduced monovalent rotavirus vaccine (RV1) in July 2014
- Rotavirus Immunization Program Evaluation in Kenya (RIPEK) established among institutions with rotavirus disease surveillance platforms
 - Evaluate effectiveness of RV1 against rotavirus diarhoea hospitalization in children <5 years of age in Kenya

RIPEK sites

Methods

- Children <5 years hospitalized with gastroenteritis at participating facility between July 2014 and Dec 2017 enrolled
- Eligible to have received ≥1 dose of rotavirus vaccine
 - ≥ 8 weeks of age and born 6 weeks before date of vaccine introduction (24th April 2014) or later
- Provided stool specimen for rotavirus testing by ELISA
- Card/registry confirmed vaccination history
 - Dose of rotavirus vaccine considered valid (i.e. immunologically protective) if administered >14 days before admission date

Methods

- Case control vaccine-effectiveness using 'Test negative' design
 - **Cases**: rotavirus-positive
 - **Controls**: rotavirus-negative
- Compare vaccination coverage among cases and controls
 - Calculate odds ratio (OR) for RV1 vaccination
 - Adjusted for age in weeks and
 - Assessed for other potential confounders including variables in age/date/site-adjusted model
- Vaccine effectiveness = 1-OR x100%

Results

Enrolled participants

Enrolled participants

Enrolled participants

	% Vaccinated		Adjusted* VE
	Cases	Controls	(95% CI)
	(N=91)	(N=418)	
Dosage			
2 doses	51/83 (61%)	308/365 (84%)	64% (35% to 80%)
≥1 doses	58/91 (64%)	349/418 (83%)	58% (32 to 78%)

	% Vaccinated		Adjusted* VE
	Cases	Controls	(95% CI)
	(N=91)	(N=418)	
Age group			
<12 months	33/55 (60%)	184/218 (84%)	67% (30 to 84%)
≥12 months	18/28 (64%)	124/147 (84%)	72% (10 to 91%)

	% Vaccinated		Adjusted* VE
	Cases	Controls	(95% CI)
	(N=91)	(N=418)	
Study site			
Kilifi	33/58 (57%)	192/237 (81%)	63% (26 to 82%)
Siaya	7/14 (47%)	58/67 (79%)	81% (21 to 96%)
Lwak	11/11 (100%)	58/61 (95%)	

	% Vaccinated		Adjusted* VE
	Cases	Controls	(95% CI)
	(N=91)	(N=418)	
Disease severity (20			
point Vesikari score)			
Less severe	34/53 (64%)	206/240 (86%)	67% (30 to 84%)
Severe	17/30 (55%)	102/125 (82%)	61% (-10 to 86%)

	% Vaccinated		Adjusted* VE
	Cases	Controls	(95% CI)
Nutrition status	(N=91)	(N=418)	
Weight for age			
Normal (z score ≥ -2)	28/51 (55%)	184/210 (87%)	84% (62% to 93%)
z score <-2	22/31 (70%)	122/152 (80%)	10% (-134% to 66%)
Height for age			
Normal	33/58 (57%)	210/247 (85%)	75% (48% to 88%)
z score <-2	17/23 (74%)	98/118 (83%)	28% (-118% to 76%)
Weight for height			
Normal	31/57 (54%)	192/218 (88%)	84% (64% to 93%)
z score <-2	19/25 (76%)	112/142 (79%)	-9% (-224% to 63%)

*Adjusted for age in weeks, date of enrollment and site

	% Vaccinated		Adjusted** VE
	Cases	Controls	(95% CI)
	(N=91)	(N=418)	
Genotypes ^v			
G1P[8]	13/32 (41%)	308/365 (84%)	60% (3% to 83%)
G2P[4]	15/18 (83)	308/365 (83%)	29% (-184% to 82%)

Discussion

- RV1 offers significant protection against rotavirus associated hospitalization
 - Consistent with data emerging from other African countries

- Significant effectiveness among well-nourished children, but not for underweight, stunted or wasted
 - May explain, in part, lower efficacy and effectiveness in low- and middle-income countries compared to high-income settings
 - Kilfi with a lower effectiveness (63%) compared to Siaya (81%) also had higher levels of malnutrition

Discussion

- Observed similar levels of protection among children <12 and ≥12 months
 - Protection extends to second year of life

- Point estimate of VE against G1P[8] was significant for but not for G2P[4]
 - Limited statistical power; important to monitor circulating strains post-introduction

Limitations

- Exclusion of 17% of cases and 26% of controls due to lack of card-confirmed vaccination data
- Included only three sites, two of which are located in the same region; may affect generalizability
- Genotype data only available for a subset of cases, limiting our ability to examine strain-specific VE

Thank you!

For more information please contact:

KEMRI CGHR

P.O. Box 1578 Kisumu, Kenya E-mail: info@kemricdc.org

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the KEMRI Center for Global Health Research.

KEMRI

