Safety and immunogenicity of a parenteral P2-VP8 subunit rotavirus vaccine

M. J. Groome, L. Fairlie, J. Morrison, A. Fix, A. Koen, M. Masenya, N. Page, L. Jose, S.A. Madhi, M. McNeal, L. Dally, I. Cho, M. Power, J. Flores, S. Cryz

Dr Lee Fairlie MBChB (UCT), FCPaeds (SA), MMED Paediatrics (Wits) Wits Reproductive Health and HIV Institute Dr Michelle Groome MBBCh (Wits), DCH (SA), MSc Med (Epi & Biostats), PhD (Wits) MRC: Respiratory and Meningeal Pathogens Research Unit

12th African Rotavirus Symposium, Johannesburg, July 30-August 1 2019

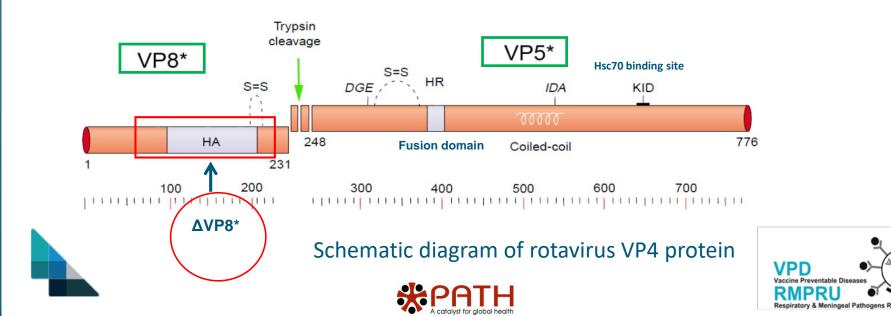
Rationale for non-replicating rotavirus vaccine (NRRV)

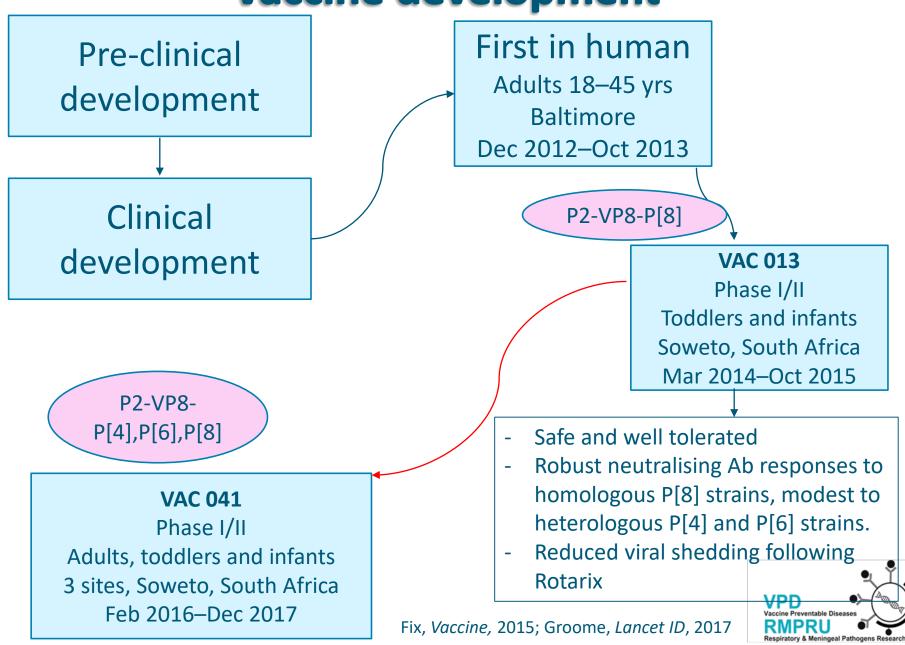
Oral rotavirus vaccines

- interference by high levels of transplacentally-acquired maternal rotavirus antibodies
- » rotavirus antibodies in breast-milk
- » co-administration of oral polio vaccine
- » micronutrient deficiency
- » enteric co-infections and microbiome
- » concurrent diseases e.g. HIV infection

NRRVs

- » bypass the need for intestinal replication
- » may provide enhanced efficacy
- » safety benefit no increased risk of intussusception
- » produced at low cost
- » combination with other childhood vaccines
- » safe in children with severe immunodeficiency, •


host genetics



P2-VP8 rotavirus vaccine

- » Developed at US NIH.
- Truncated VP8 subunit protein from human Wa strain (G1P[8]) fused to the tetanus toxin P2 epitope:
 - > Expressed in E. coli
- » Liquid formulation, adsorbed onto aluminum hydroxide adjuvant, administered intramuscularly.

Vaccine development

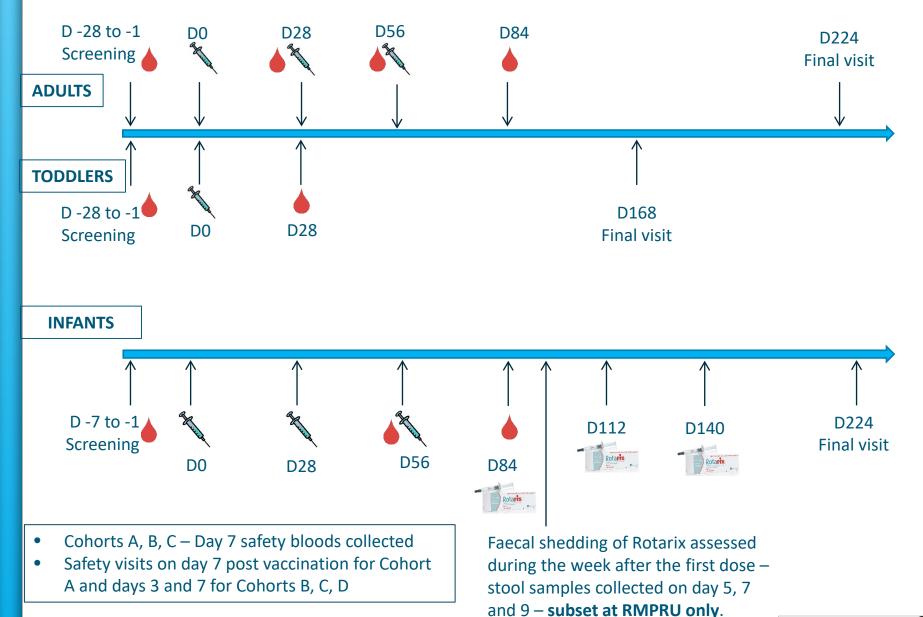
VAC 041 – trivalent P2-VP8 vaccine

- » Trivalent vaccine, including P[4], P[6], and P[8] antigens (DS-1, 1076 and Wa).
- » Dose 5µg to 30µg per serotype (15 to 90µg total antigen) lack of a clear dose-response in previous study.
- » Double-blind, randomized, placebo-controlled, descendingage, dose-escalation study to evaluate safety, tolerability and immunogenicity in adults, toddlers, and infants.
- » Multi-centre study: March 2016–Jan 2018.

Respiratory and Meningeal Pathogens Research Unit (National PI/Site PI - Dr Michelle Groome)

Family Clinical Research Unit (FAM-CRU) (Site PI -Dr Julie Morrison)

Shandukani Research Centre (Site PI - Dr Lee Fairlie)



Group		TV P2-VP8 Dose	Ν	
	A1	30 µg	12	
Α		Placebo	3	
Adult	4.2	90 µg	12	
	A2	Placebo	3	
	A Total		30	
	D1	30 µg	12	
В	B1	Placebo	3	7
Toddler	D 2	90 µg	12	7 }
	B2	Placebo	3	
	30			
	C1	15 μg	12	
	C1	Placebo	4	1
С	C2	30 µg	12	1
Infant		Placebo	4	1
	62	90 μg	12	1
	C3	Placebo	4	
C Total			48	
		15 μg	138	1 [
D		30 µg	138	1 [
Infant		90 µg	138	
		Placebo	138	V
	D Total		552	Vacci Resp

RMPRU

All sites

Objectives

» Primary Objectives:

> Safety

To evaluate the safety and tolerability of the trivalent P2-VP8 subunit rotavirus vaccine at escalating dose levels in healthy South African adults, toddlers and infants

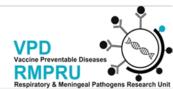
> Immunogenicity

To evaluate the immunogenicity of the trivalent P2-VP8 subunit rotavirus vaccine at different dose levels in healthy South African infants

» Exploratory Objective:

> Efficacy

To evaluate the impact of the trivalent P2-VP8 subunit rotavirus vaccination on shedding of Rotarix subsequently administered in healthy South African infants (subset)


Primary safety endpoints

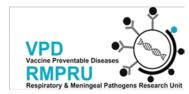
- > Number of adverse events and serious adverse events through 28 days after the last study injection
- > Number of vaccine-induced reactions within 7 days after each injection
 - Local injection site pain/tenderness, redness, swelling, itching, local lymphadenopathy
 - Systemic fever, vomiting, nausea, fatigue, chills and myalgia for adults; fever, vomiting, irritability, decreased activity, and decreased appetite for toddlers and infants

Note:

- > Progression from adults, toddlers to infants and for dose escalation: Safety Review Committee evaluated clinical and laboratory safety data through 7 days after the 1st injection.
- > DSMB oversight.

Primary immunogenicity endpoints

» IgG to P2-VP8 vaccine antigens


- > Three assays, one for each antigen P[4], P[6] and P[8]
- > 4-fold rise in titer from baseline to 28 days after the 3rd vaccination
- > Results both unadjusted and adjusted for maternal antibody

» IgA to P2-VP8 vaccine antigens

- > Three assays, one for each antigen P[4], P[6] and P[8]
- > 4-fold rise in titer from baseline to 28 days after the 3rd vaccination
- » Neutralizing antibodies to the strains from which vaccine antigens derived
 - > Assay strains DS-1 (P[4]), 1076 (P[6]) and Wa (P[8])
 - > 2.7-fold rise in titer from baseline to 28 days after the 3rd vaccination
 - > Results both unadjusted and adjusted for maternal antibody

Enrolment

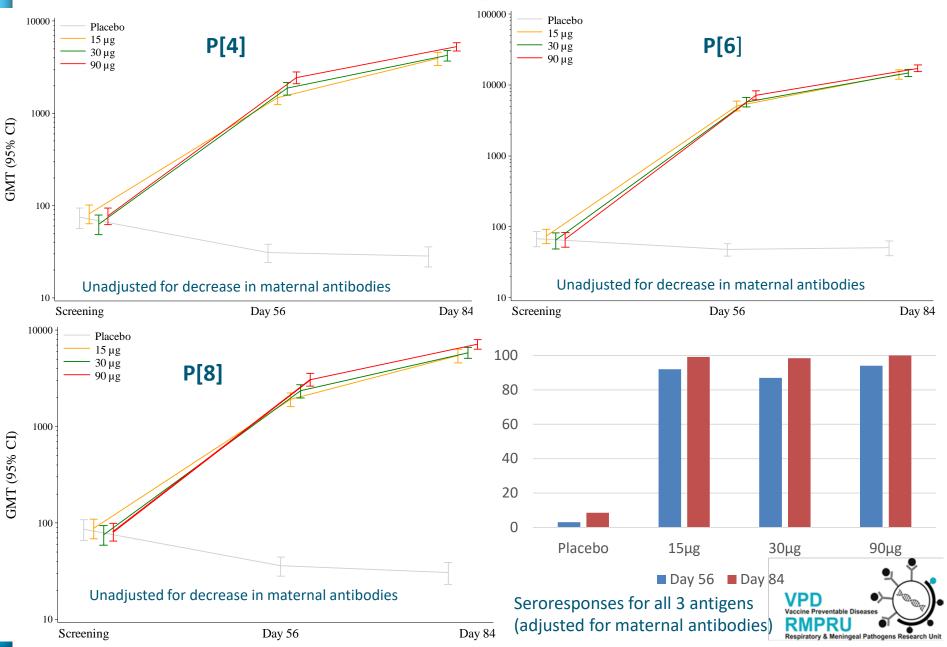
- » Cohort A: 30 adults (15 per cohort; safety analysis)
- » Cohort B: 30 toddlers (15 per cohort; safety analysis)
- » Cohort C and D:

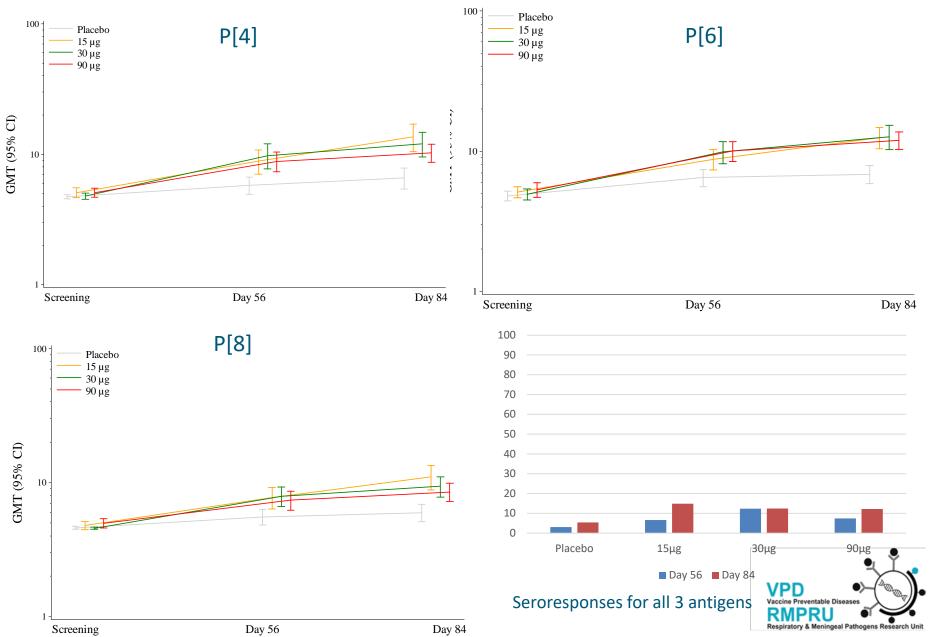
	Placebo	15 µg	30 µg	90 µg	Total
Randomized	139	140	140	139	558
Vaccinated	139	139	140	139	557
Completed Day 84 visit	133 (96%)	134 (96%)	134 (96%)	135 (97%)	536 (96%)
Day 84 blood collected/analyzed	130 (94%)	133 (95%)	133 (95%)	134 (96%)	530 (95%)
PP immune population	130 (94%)	132 (94%)	132 (94%)	134 (96%)	<mark>528</mark> (95%)

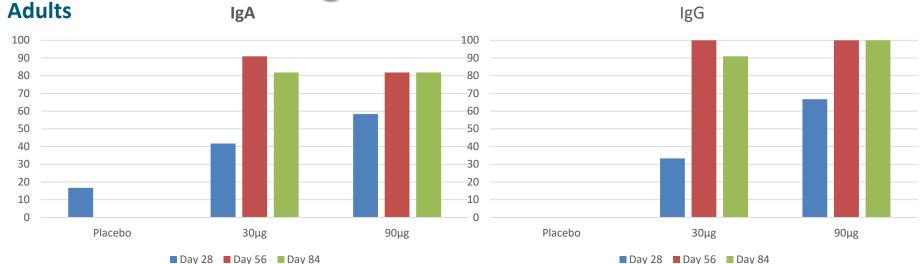
Respiratory & Meningeal Pathogens Research Unit

» No statistically significant differences observed between the treatment groups in the proportions of participants with local reactions, systemic reactions or unsolicited adverse events: all cohorts

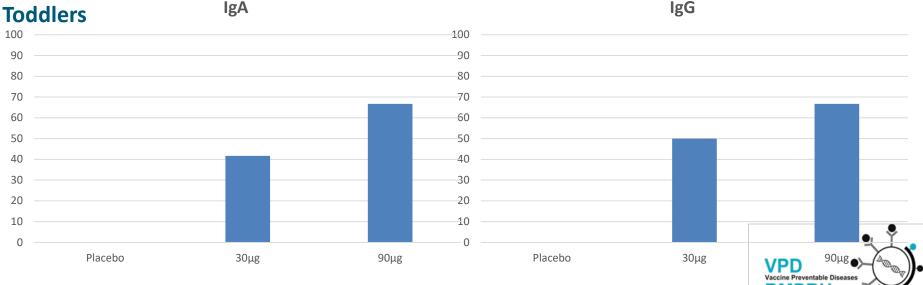
Infants	Placebo n (%)	15µg n (%)	30µg n (%)	90µg n (%)
Any local reaction (Grade 2 or higher)	9 (6.5)	19 (13.7)	13 (9.3)	16 (11.5)
Any systemic reaction (Grade 2 or higher)	30 (21.6)	44 (31.7)	30 (21.4)	42 (30.2)
Any unsolicited AE (Grade 2 or higher)	19 (13.7)	24 (17.3)	18 (12.9)	20 (14.4)
Any SAE	8 (5.8)	13 (9.4)	6 (4.3)	8 (5.8)
Any AE related to product	3 (2.2)	2 (1.4)	3 (2.1)	2 (1.4)


Immunogenicity (Per Protocol Population)

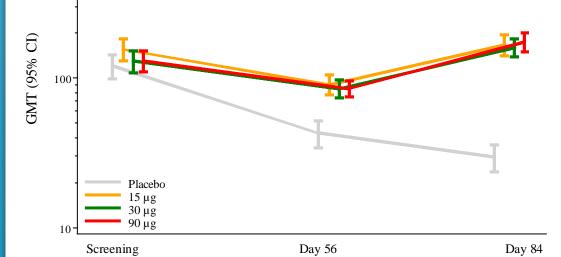



Anti-P2-VP8 IgG in infants

Anti-P2-VP8 IgA titers in infants



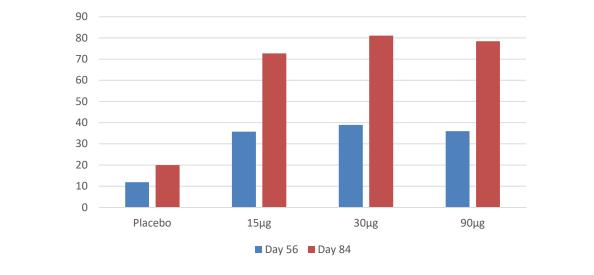
Serum anti-P2-VP8 IgA and IgG seroresponses for all 3 antigens in adults and toddlers



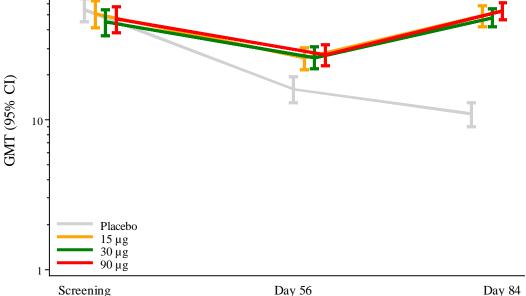
lgG

Respiratory & Meningeal Pathogens Research Un

Serum Neutralizing Antibodies to Wa in infants

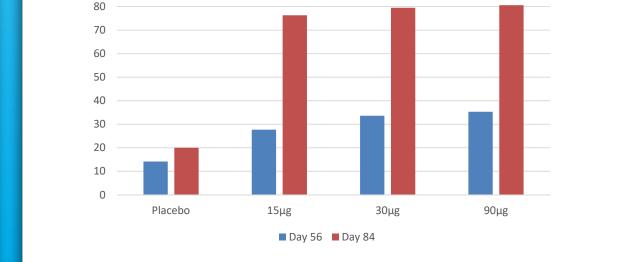


100

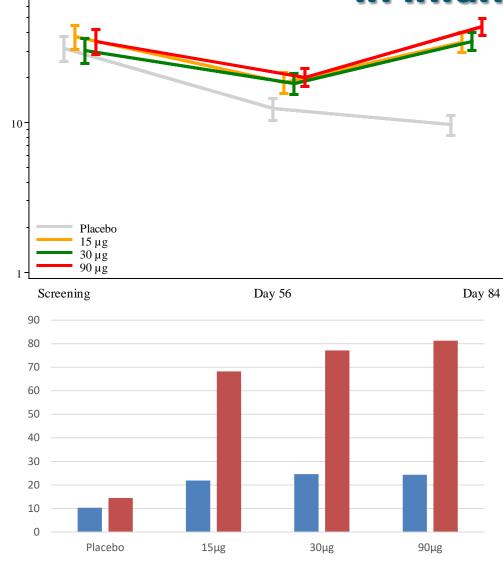

Neutralizing Antibodies to Wa in Infants - GMT and 95% CI Per-Protocol Population, unadjusted for decrease in maternal antibodies

Neutralizing antibody seroresponse against Rotavirus Strain Wa in Infants - Per-Protocol Population Adjusted for decay in maternal antibodies

Serum Neutralizing Antibodies to DS-1 in infants


100-

90


Neutralizing Antibodies to DS-1 in Infants - GMT) and 95% CI Per-Protocol Population, unadjusted for decrease in maternal antibodies

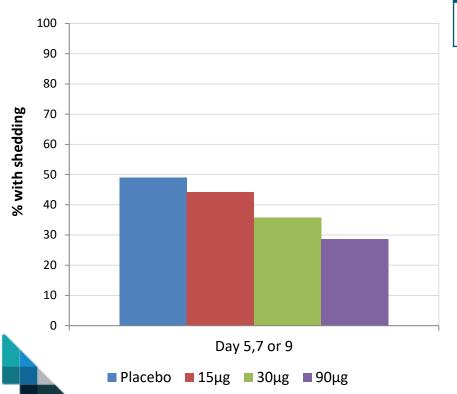
Neutralizing antibody seroresponse against Rotavirus Strain DS-1 in Infants - Per-Protocol Population Adjusted for decay in maternal antibodies

Serum Neutralizing Antibodies to 1076 in infants

Day 56 Day 84

100-

GMT (95% CI)


Neutralizing Antibodies to 1076 in Infants - GMT) and 95% CI Per-Protocol Population, unadjusted for decrease in maternal antibodies

Neutralizing antibody seroresponse against Rotavirus Strain 1076 in Infants - Per-Protocol Population Adjusted for decay in maternal antibodies

Rotavirus shedding post-Rotarix - infants

» Proportion of infants shedding rotavirus (ELISA) 5, 7 or 9 days after administration of the first dose of Rotarix[®] (4 weeks after the 3rd P2-VP8/placebo injection).



»	Subset –	infants a	t RMPRU:
----------	----------	-----------	----------

Placebo	15 µg	30 µg	90 µg	Total
53	52	56	56	217

Reduction compared to placebo (any of the three days):

- 15µg: 10% (95% CI: -36-40)
- 30µg: 27% (-14-53)
- 90µg: 42% (4-65)

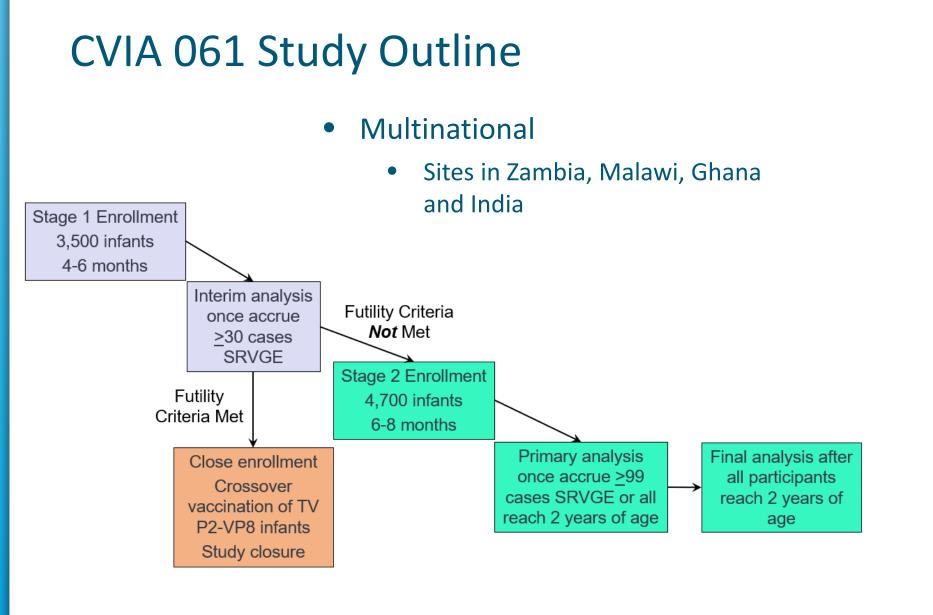
Conclusions

- » All dose-levels well tolerated and no safety signals.
- » Excellent anti-P2-VP8 IgG across the three vaccine Ptypes.
- » Very good neutralising antibody responses to Wa, DS-1 and 1076 strains.
- » Broader anti-P2-VP8 IgG and neutralising antibody responses than demonstrated for the monovalent vaccine.
- » Responses better after 3 doses compared to 2 doses.
- » Anti-P2-VP8 IgA in infants lower than anticipated.
- » Significantly fewer infants vaccinated with the 90µg dose shed rotavirus compared to placebo recipients.

Considerations for Future Development Plans

- » Assessment of efficacy of the stand-alone vaccine.
- » Exploration of prime-boost regimens of live, oral RV vaccines and the P2-VP8 vaccine.
- » Development of co-formulated vaccine, combining other EPI/UIP vaccines and P2VP8 in a single injection, including clinical assessment.
- » Licensure and WHO prequalification of stand-alone and/or co-formulated vaccine for global availability.

Assessment of Efficacy of the Standalone Vaccine


» CVIA 061

A double-blind, randomized, active comparatorcontrolled, group-sequential, multinational trial to assess the safety and efficacy of a trivalent P2-VP8 subunit rotavirus vaccine in prevention of severe rotavirus gastroenteritis in healthy infants

A catalyst for alobal health

Acknowledgements

RMPRU site Anthonet Koen Lisa Jose **Carol Taoushanis** Clinic team Data team Laboratory team

PATH Alan Fix **Stanley Cryz** Maureen Power Catherine Johnson Margaret Wecker **Allison Stanfill** Jorge Flores

Shandukani site

National Institute for Communicable Diseases, South Africa Dr Nicola Page **NIH** – vaccine development

FAM-CRU site

EMMES Val Brown and team Len Dally

Cincinnati Children's Hospital Medical Center Monica McNeal Nicole Meyer **Brandi Phillips**

Funding from the Bill & **Melinda Gates** Foundation

catalyst for alobal health

change the outcome°

