
Impact and cost-effectiveness of rotavirus vaccination in Palestine: examining a change from ROTARIX to ROTAVAC vaccines

12th African Rotavirus Symposium 30 July – 1 August, 2019

Frédéric Debellut Health Economist PATH's Center for Vaccine Innovation and Access

1	Context
2	Objective
3	Model
4	Inputs and assumptions
5	Results
6	Conclusion

Context

- 14 out of 22 countries in the WHO Eastern Mediterranean Region (EMRO) have introduced rotavirus vaccine.
- Palestine is the first country to use ROTAVAC in routine immunization outside of India:
 - **2016** Start of the program with support from RVF, introduced ROTARIX
 - **2017** 97% coverage after a year of implementation
 - 2018 Switch to ROTAVAC
 - **2019** Transfer of procurement's financial responsibility
 - Switch provides an opportunity for empiric assessment of different rotavirus vaccine programmatic characteristics.

Product characteristics

ROTARIX

2 doses 1-dose plastic tube Shelf-life 24 months at 2 to 8°C

Dose quantity 1.5 ml Cold chain volume 17.1 cm³ per dose or 34.2 cm³ per FIC

ROTAVAC

3 doses 5-dose vial and dropper Shelf-life 60 months at -20°C / 6 months at 2 to 8°C post thaw Dose quantity 0.5 ml Cold chain volume 4.2 cm³ per dose or 12.6 cm³ per FIC

1	Context
2	Objective
3	Model
4	Inputs and assumptions
5	Results
6	Conclusion

Objective of the analysis

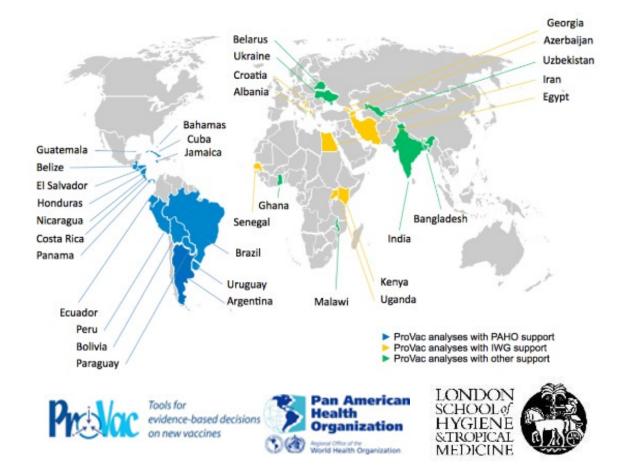
To assess impact and cost-effectiveness of rotavirus vaccination in Palestine, specifically evaluating the economic implications of the change from ROTARIX to ROTAVAC.

Analysis overview

Study population: children < 5 years of age 10 cohorts, from 2016 to 2025 Health system and societal perspectives Results reported in 2018 US\$ Discount rate 3% 3 scenarios evaluated

Scenarios 2 **ROTARIX** vs no **ROTAVAC vs no** vaccine vaccine 3 Switch from **ROTARIX** to ROTAVAC **Model Outputs** Health impact (averted cases, visits, hospitalizations, deaths and DALYs) Averted healthcare costs Costs of vaccination program Incremental cost-effectiveness ratio

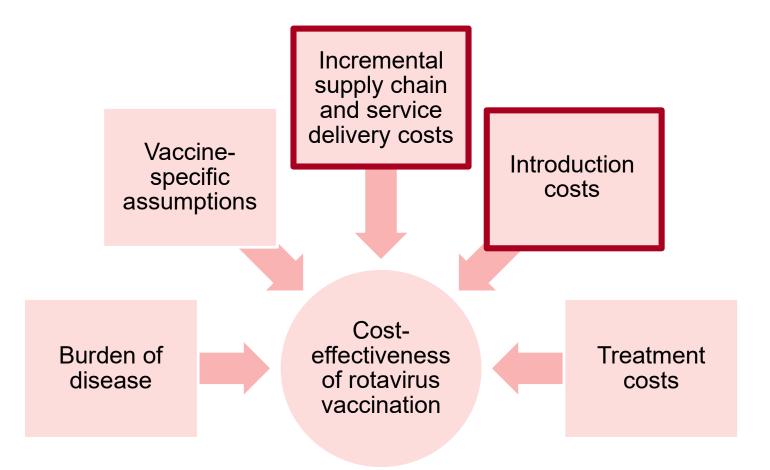
1	Context
2	Objective
3	Model
4	Inputs and assumptions
5	Results
6	Conclusion


UNIVAC model

UNIVAC is a single, universal vaccine impact and cost-effectiveness decision support model developed in a standardized, accessible Excelbased interface.

Developed as a follow-on to PAHO's TRIVAC model, which has been used in many studies worldwide.

Allows economic evaluation of:


- Rotavirus vaccine
- PCV vaccine
- Hib vaccine
- HPV vaccine
- Men ACYW vaccine
- Others

1	Context
2	Objective
3	Model
4	Inputs and assumptions
5	Results
6	Conclusion

Data inputs

Vaccine assumptions

Dosing schedule based on Pentavalent vaccine

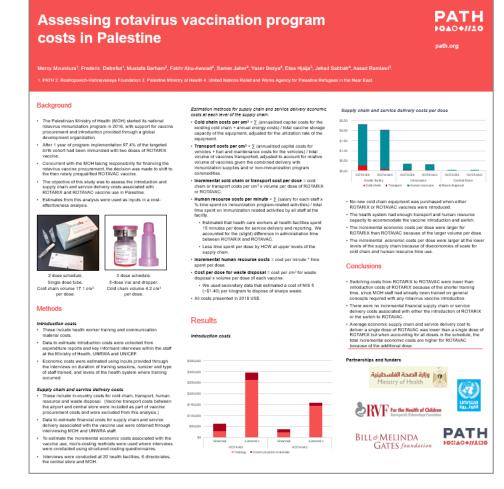
Price per dose: \$4 Wastage: 0.3% International delivery charges: \$0.026 per dose In-country delivery charges from airport to the

Central Store: \$0.029 per dose

Price per dose: \$1 (\$0.85 - \$1.5) Wastage: 4.7%

International delivery charges: \$0.025 per dose

In-country delivery charges from airport to the Central Store: \$0.017 per dose


Vaccine program costs

Introduction costs were collected for both vaccines but initial intro costs with ROTARIX were applied to both vaccines in the analysis to allow for a fair comparison.

Total economic intro costs were close to \$300,000

Supply chain and service delivery cost data were collected in 20 health facilities, 6 districts and at the central store

Overall the supply chain and service delivery costs per dose are \$0.33 cheaper with ROTAVAC

1	Context
2	Objective
3	Model
4	Inputs and assumptions
5	Results
6	Conclusion

Estimated health outcomes

(10 cohorts vaccinated over 2016 – 2025)

	Without vaccine	With vaccine	Averted
RVGE Cases	782,660	213,380	569,280
RVGE Outpatient visits	414,027	112,879	301,148
RVGE Hospital admissions	111,209	30,320	80,889
RVGE Deaths	140	38	102
DALYs (discounted)	5,380	1,459	3,921

Estimated costs

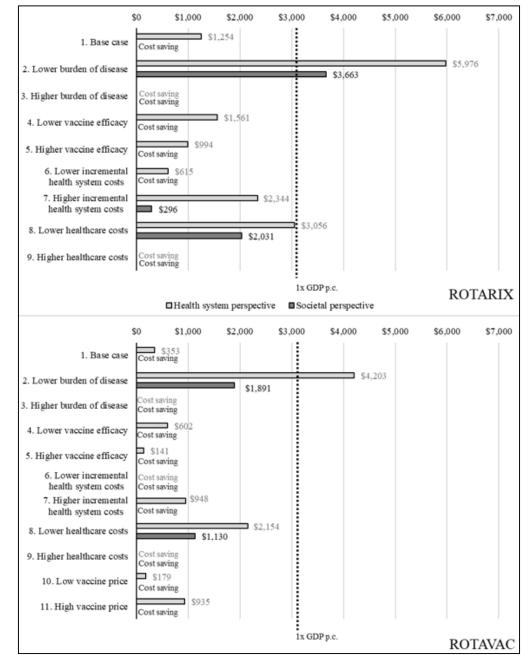
(10 cohorts vaccinated over 2016-2025)

	Without vaccine	With vaccine	Averted
RVGE Treatment costs (Health system perspective)	\$19.4M	\$5.3M	\$14.1M
RVGE Households costs	\$11M	\$3M	\$8M
RVGE Total costs (Societal perspective)	\$30.4M	\$8.2M	\$22.2M

	With ROTARIX \$4/dose	With ROTAVAC \$0.85/dose	With ROTAVAC \$1/dose (base case)	With ROTAVAC \$1.5/dose
Vaccine program costs	\$19M	\$14.8M	\$15.5M	\$17.8M

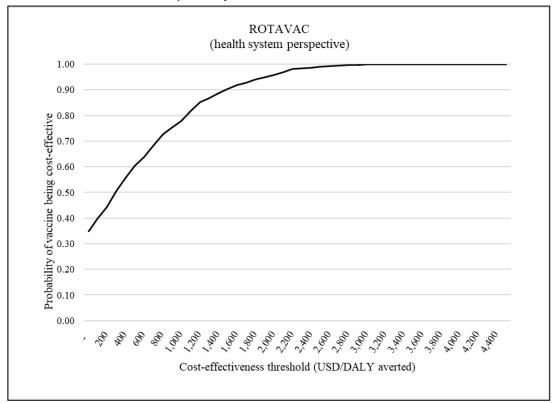
All figures are discounted and expressed in million US\$

Incremental cost-effectiveness ratio (ICER)


	Health system perspective	Societal perspective
ROTARIX vs. no vaccination	\$1,254	Cost-saving
ROTAVAC* vs. no vaccination	\$353	Cost-saving
ROTAVAC* vs. ROTARIX	Cost-saving	Cost-saving
* At \$1 per dose		

- ICERs are usually compared to a specific willingness-to-pay (WTP) threshold.
- In Palestine, the practice has been to use 1 times GDP per capita as a WTP threshold.
- Palestine's GDP per capita was \$3,095 in 2017 US\$ (World Bank).
- Both vaccines are likely cost-effective interventions under these criteria, with an economic advantage for ROTAVAC.

Scenario analysis


- Scenario analysis focused on disease burden, vaccine efficacy, health system costs, healthcare costs, and price for ROTAVAC.
- Most scenarios yield an ICER below the threshold.
- With ROTAVAC, results are above threshold only for the low-disease burden, health system perspective scenario.

Probabilistic sensitivity analysis

- 1,000 runs, ROTAVAC only
- ROTAVAC has 80% chance to be cost-effective at a WTP threshold of \$1,100.
- ROTAVAC has 90% chance to be cost-effective at a WTP threshold of \$1,500.

Cost-effectiveness acceptability curve

1	Context
2	Objective
3	Model
4	Inputs and assumptions
5	Results
6	Conclusion

Conclusion

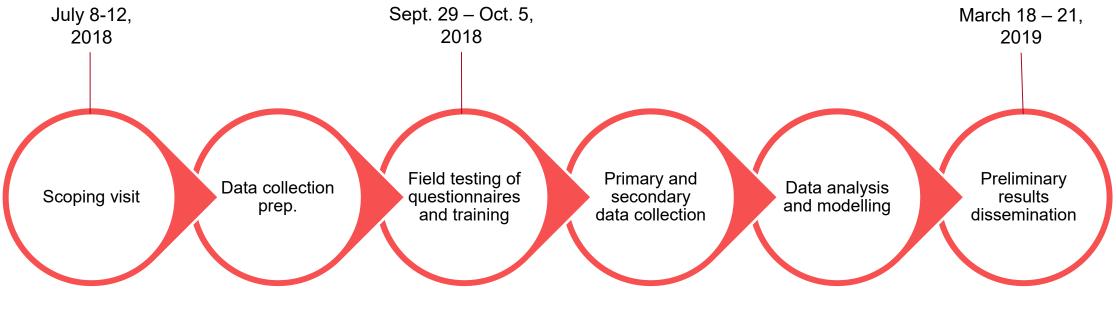
- Rotavirus vaccination is a **cost-effective intervention in Palestine**, averting a share of the rotavirus burden and generating savings on healthcare costs, for the health system and for households.
- ROTAVAC presents an economic advantage over ROTARIX. Shifting from ROTARIX to ROTAVAC was a cost-saving option because of:
 - Lower vaccine price per dose.
 - Smaller cold chain volume and, hence, lower supply chain costs.
- Lower supply chain costs are driven by cold chain costs at the health facility level as well as incountry transportation costs.
- The assumed similar efficacy of both vaccines may be confirmed by the ongoing epidemiological surveillance.
- Countries should systematically assess the different products available and their characteristics as part of their decision-making process.

Study collaborators and funding source

Mercy Mvundura - PATH Samer Jaber - Palestinian Ministry of Health Yaser Bouzya - Palestinian Ministry of Health Jehad Sabbah - United Nations Relief and Works Agency for Palestine Refugees in the Middle East Mustafa Barham - Rostropovich-Vishnevskaya Foundation Fakhr Abu-Awwad - Rostropovich-Vishnevskaya Foundation Diaa Hjaija - Palestinian Ministry of Health Assad Ramlawi - Palestinian Ministry of Health Andy Clark - LSHTM Clint Pecenka – PATH

This work was supported with funding from the Bill & Melinda Gates Foundation.

Thank you! وزارة الصحة الفلسطينية Ministry of Health PATH unrwa الأونروا **}0::**▲0♦//2□0 **EXISTING STATE For the Health of Children** Rostropovich Vishnevskaya Foundation


BILL& MELINDA GATES foundation

Process overview

- Stakeholder
 engagement
- Scope of the analysis
- Approach to modelling
- UNIVAC orientation
- Available local data
- Identification of data sources
- Development of questionnaires
- Secondary data collection

- Field testing and adaptation
- Training on questionnaires and data collection
- Modelling of treatment costs
- Supply chain and service delivery data collection in HF, HD, and CS
- Secondary data collection (introduction costs and vaccine procurement)
- Surveillance data

- Discussion on disease burden modelling
- Supply chain and service delivery cost data analysis
- Conducting cost effectiveness
- analysis
- Scenario analysis

- Presentation and discussion of results with the MoH (PMD, PHC, EPI)
- Deputy Ministry of Health

РАТН

- UNRWA
- Local WHO

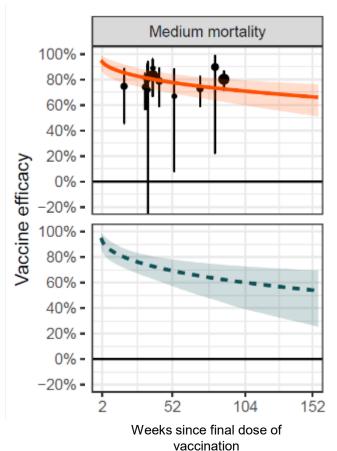
Burden of disease

Annual incidence per 100,000 among U5 before vaccine introduction			
	Base	Low	High
Overall RVGE incidence ¹	10,000	7,000	14,000
RVGE non severe cases ²	8,224	6,160	11,373
RVGE non severe visits ³	4,350	3,259	6,016
RVGE severe cases ²	1,776	839	2,627
RVGE severe visits ³	939.5	444	1,390
RVGE severe hospitalizations ⁴	1,421	555	2,102
Severe RVGE deaths ⁵	2.03	0.84	4.88

1. Global RVGE incidence as reported by Bilcke et al in their systematic review and meta-analysis including 21 studies worldwide. Commonly use for RV disease burden modelling.

2. Non-severe and severe RVGE cases are differentiated using another systematic review and meta-analysis by Fisher Walker et al. which gives proportion of RV in severe diarrhea episodes per WHO region (using EMRO here)

3. Using the Palestine MICS 2014: treatment seeking rate in case of diarrhea 52.9%


4. Assuming a larger proportion of severe cases would seek treatment or be referred to hospitals: 80%

5. Median value of 3 sources of data estimating RV related death per country (MCEE, IHME and WHO CDC)

Vaccine efficacy and waning

- Vaccine efficacy and waning based on data from 8 published randomized controlled trials in medium U5 mortality settings
 - 91% vaccine efficacy after 2 doses
 - 58% vaccine efficacy after 1 dose
 - Waning
- Assuming similar efficacy of ROTARIX and ROTAVAC
- With ROTAVAC, model assumes full protection after 2nd dose but 3rd dose is required

Introduction costs

ROTARIX introduction costs applied to both vaccines

	West Bank and Gaza
Financial costs	\$61,398
Training	\$27,511
Communication materials	\$33,887
Economic costs	\$296,263
Training	\$262,376
Communication materials	\$33,887

Treatment costs

- Direct medical costs were modelled using a study estimating unit costs of public hospitals and primary healthcare centers in Palestine¹ and local protocol and costs for laboratory tests and drugs.
- Non-medical (household) costs include meals, transportation for child and caregiver.
- Indirect cost corresponds to loss of productivity for caregiver.

	Health system perspective (Direct medical costs)	<u>Direct non-</u> medical cost	<u>Indirect</u> <u>cost</u>	Societal perspective (Direct med. costs + direct non-med. costs + indirect costs)
Treatment cost for RVGE inpatient care	\$173.85	\$28.04	\$35.59	\$237.48
Treatment cost for RVGE outpatient care	\$7.63	\$9.35	\$4.45	\$21.43

1. Younis M. Z. et al. Estimating the unit costs of public hospitals and primary healthcare centers. Int J Health Plann Mgmt (2012). https://doi.org/10.1002/hpm.2147

Supply chain and service delivery costing

- Estimated the cost per dose for supply chain and service delivery for all vaccines used in the EPI program.
- Then used these data to estimate the incremental economic costs of adding rotavirus vaccine into the immunization schedule in Palestine.
- Costing data collection was done using structured costing questionnaires
- Data were collected from:
 - 10 health facilities in West Bank and 10 in Gaza
 - 5 directorates in West Bank and 1 in Gaza
 - The Central Store in Nablus

Incremental supply chain and service delivery economic cost estimates

	ROTARIX			ROTAVAC – 5 dose vials					
Cost category	Average	Min	Max	Average	Min	Max			
Estimated incremental economic costs per dose at the health facility level									
Cold chain	\$0.28	\$0.04	\$1.41	\$0.07	\$0.01	\$0.34			
Waste disposal	\$0.02			\$0.01					
Human resource	\$2.01	\$1.53	\$2.32	\$1.95	\$1.47	\$2.24			
Total	\$2.32	\$1.59	\$3.75	\$2.02	\$1.49	\$2.59			
Estimated incremental economic costs per dose at the directorate level									
Cold chain	\$0.03	\$0.0330	\$0.05	\$0.024	\$0.006	\$0.091			
Transport	\$0.022	\$0.0138	\$0.044	\$0.005	\$0.003	\$0.011			
Human resource	\$0.30	\$0.10	\$0.50	\$0.30	\$0.10	\$0.50			
Total	\$0.35	\$0.15	\$0.59	\$0.33	\$0.11	\$0.60			
Estimated incremental economic costs per dose at the central Store									
Cold chain	\$0.0114	-	-	\$0.012	-	-			
Transport	\$0.003	-	-	\$0.003	-	-			
Human resource	\$0.01	-	-	\$0.001	-	-			
Total	\$0.03	-	-	\$0.016	-	-			
Total incremental economic costs per dose costs at all levels of the supply chain									
Total	\$2.695	\$1.77	\$4.37	\$2.362	\$1.62	\$3.21			

Limitations

- Unable to use local data for disease burden modelling...
 - Incomplete set of data from HMIS for hospitals (year 2015)
 - Follow up of different age groups in Gaza between MoH (U3) and UNRWA (U5)
 - PHC visits for diarrhea in West bank were reported for all the population, except for 1 district
- ...addressed through scenario analysis accounting for uncertainty around the data used
- Assumption around similar efficacy of ROTARIX and ROTAVAC may be confirmed or informed by the epidemiological study.
- Difficult to capture differences between West Bank and Gaza outside of supply chain and service delivery cost.
- Assumption that services are provided through the 10-year period without changes

